Riot Games released League of Legends in 2009 to worldwide acclaim, and multiple new games and TV series over the following years; this success has led to an increased visibility to potential attackers that will eventually leverage existing vulnerabilities. Students on the Riot Games team will develop and deploy an extensible system and framework that automatically monitors Riot’s environments for out-of-compliance items in the cyber security space.
Whirlpool is looking at advanced controls technologies including machine learning, neural networks, and model predictive controllers that will more efficiently cool complex refrigerator systems. Students on this team will evaluate current capabilities on the Python framework that will be fast prototyped and applied in a simulation environment with a conceptual plant model.
Customers are increasingly expecting a high level of customer service from their Casino, and MotorCity is constantly evaluating their business model to make sure they are providing top notch service while optimizing their expenditures and staffing levels. Students on the MotorCity team will use internal and external data to develop a system to forecast demand (number of people at the casino) and a strategy to determine the optimal level of staffing.
Hyundai is taking action to improve their safety data analytics systems including machine learning and artificial intelligence driving them towards a world class safety focused organization. Students on the Hyundai team will evaluate existing recall data and develop models that provide an early warning system for potential developing trends, indicating variables/areas that should receive special attention.
Keurig Dr Pepper (KDP) markets the number one single serve coffee brewing system in the United States. Students on the Keurig team will design and prototype of a motorized coffee pod puncture mechanism to be integrated into a Keurig coffee machine.
The flat structure of the GM Ultium electric vehicle (EV) battery platform provides an opportunity to optimize the geometry for aerodynamics in a previously unexplored way. Students on the GM team will design and evaluate features to be included in the underbody to reduce vehicle drag.
ProQuest, part of Clarivate, is an educational technology company committed to empowering researchers and librarians around the world. Students on this team will use machine learning techniques to deliver a proof-of-concept system which predicts the future success of academic researchers based on information available near the time of dissertation publication.
Principal is bounded by one common purpose: to give you the financial tools, resources, and information you need to live your best life. Students on the Principal team will design and deliver an investment/financial planning tool informed by significant research into the user needs specific to Gen Z investors.
Every year, Constellation Generation moves thousands of nuclear fuel bundles safely in and out of reactor cores in a challenging underwater environment that is heavily dependent on humans to ensure reliability. Students on this team will aim to eliminate the human element of this critical task by developing a robotic tool that can stand up to the environment, reducing the risk of an error.
Students on this team will become familiar with DENSO’s core processes while developing enhanced connectivity between existing software business systems for improved commercial management. All qualifying student team members will be offered an optional DENSO 2023 Summer Internship based in Michigan/Tennessee/Remote. (see website and brief for internship qualifications)
Cat Digital, the digital arm of Caterpillar Inc., uses connected fleet information and emission reduction strategies to determine the most effective fleet management policies. Students on the Cat Digital team will develop an analytics model that helps customers identify the ideal path to lessen the environmental impact of their fleet over time.
Axalta Coating Systems is shifting their product offerings to lower VOC formulations which poses some new challenges. Students on the Axalta team will design and implement a series of experiments to enhance the understanding of changes in paint film hydrophobicity over time, improving performance of these more environmentally friendly coatings.
This project is an opportunity to develop creative thinking skills while implementing and validating engineering principals and theories of fluid dynamics in a ventilated automotive seat. Students on the Magna team will develop a complete seat ventilation system model, supported both by theory and experimental data, that predicts the thermal comfort performance of future seat designs.
Students on the ASML team will identify creative ways to produce the flexible elements of small lens mounts for semiconductor manufacturing equipment at a lower cost than the current EDM method. They will deliver a durable, high stability, high precision mechanical mount prototype for small lenses.
Shiloh Industries is a global innovative solutions provider focusing on light weighting technologies that provide environmental and safety benefits to the mobility market. Students on the Shiloh team will develop and characterize viscoelastic adhesive formulation for Constrained Layer Damping (CLD) applications.
To achieve NASA’s goal for Lunar to Mars and beyond habitation, advanced power systems and power system integration are required to influence multiple mission scenarios where power constraints have been a limiting factor. Students on the Northrop Grumman team will develop and validate innovative power designs and integrated power grid solutions for the extreme environment of the lunar surface.
The students on the Honda team will develop a 2-D path planning/following algorithm for drones and unmanned ground vehicles (UGV) for both real world and simulation environments. They will extend their system to include a simulation platform and drone motion planner to achieve scalable harmonious navigation in a multi-robotic-system environment.
To better serve customers, Subaru wishes to implement a self-opening door system that operates based on proximity of the user to the vehicle, computer vision, and machine learning to determine intent of the driver to enter the vehicle. Students on the Subaru team will design and implement the door system into a prototype WRX that will be displayed throughout the US at auto shows, racetracks, and extraneous events in the future.
The Altrix Precision Temperature Management System regulates patient temperature by circulating water through wraps or pads applied to the patient. Students on the Stryker team will design and prototype a docking station for the Altrix that automates disinfection of the unit to ensure operational safety.
Today, more than ever, people expect to be able to attend meetings and events virtually with a high quality of engagement. Students on the In-Person Away Virtual Events (IPAVE) team will design and develop a virtual presence robot focusing on mobility and remote navigation control, sourcing components within the United States whenever possible.
Walbridge construction company makes jobsite safety a top priority on all their projects, including their two active jobs on U-M’s North Campus. Students on the Walbridge team will develop a Proximity Warning Alert System (PWAS) that detects people, rather than objects, in the blind spots of mobile construction equipment.
The Ann Arbor Hands on Museum is working to improve the educational experience for the many young school groups that patronize the museum. Students will update the design for a new platform and redeploy a beacon system that tracks individual museum guest’s participation in learning activities during their visit to support this goal.
Amway uses a number of techniques to measure the effectiveness of their skin care products, one is comparing facial images before and after the use of their products. Students on the Amway team solve a challging CV problem to connect /combine multiple images of a single face and deliver it in a tool using Amway’s existing Amazon Web Services (AWS) platform.
Consumer satisfaction is THE quality metric for FLASH; however, it is very challenging to evaluate consumer satisfaction remotely. Students on the FLASH team will design and develop a computer vision system for FLASH parking kiosks to determine consumer sentiment (satisfied/dissatisfied) in an anonymized and balanced manner, and then utilize the trend in sentiment to help discover operational problems.
The JPMC team will design and deliver the capability to capture and edit customers’ financial priorities and make product recommendations for JPMorgan’s 47 million active mobile customers. This will generate personalized content for customers based on their financial priorities, improving marketing efficacy, customer engagement, and retention with the Chase mobile app. All student team members will become JPMC 2023 Summer Interns based in Chicago, Il.