Want to speak with someone?

Call (734) 763-0818, stop by Chrysler 117, or

email engin-mdp@umich.edu with questions.

This start-up faculty research team will develop software-based tools to facilitate diagnosis and interpretation of cancer image data for low resource global settings.
In order to gain better insight into the preferences and behaviors of drivers when they interact with Advanced Driving Assistance Systems (ADAS), Subaru would like to collect naturalistic data from drivers. Students on the Subaru team will design and execute a complete data collection system in a test vehicle provided by Subaru that acquires and stores data including video, vehicle accelerometer, and location data for analysis at a later date.
The Mapleseed project is developing a passive (i.e., free-falling) wireless in-situ sensor platform for use in detailed sensing of various properties of Earth’s atmosphere. Students are developing miniature wireless circuit boards (using TI cc1310 radio) along with 3D printed airframes.
Researchers at the University of Michigan Transportation Research Institute (UMTRI) have been improving accident impact simulations by broadening the types of body sizes and shapes considered. Students will develop parametric human body models that are capable of testing wide ranges of body sizes, types, and shapes to help create better adaptive and personalized designs for human safety and mobility.
To assess vehicle safety and ease to operation, we will improve upon the design of a virtual driving simulator through open-source software, simple hardware, and virtual roadway and scenario simulation.
This faculty research team designs ground radio instruments and data analysis pipelines to detect radio bursts from extreme space weather in collaboration with NASA's SunRISE mission, which will send up six SmallSats to Earth orbit to image the lowest frequency radio bursts for the first time.
This faculty research team uses core principles of animal locomotion to create advanced robot technologies by distilling their mathematical principles and using machine learning automation.
Our research develops human-centric strategies for automating video data extraction to record vehicle occupant behavior to support enhanced safety, autonomous vehicle development, and other applications.
The current after-market automotive rear seat entertainment tablet headrest mounting solutions aren’t very aesthetically pleasing and they lack integrated inductive charging. The students on the Alps Alpine team will design and prototype an aesthetically pleasing solution that has wireless inductive charging integrated into it so the tablet will charge while connected to the headrest mount.
Navigating 100,000 square feet of casino floor spread out over 2 levels is challenging for both patrons and staff of the MotorCity Casino. Students on the MotorCity Casino team will utilize data from a large and dense network of Bluetooth beacons on the casino floor to create a native Android mobile app.
ProQuest is an educational technology company which provides academic libraries with Rialto, a marketplace which supports evidence-based, data-driven decisions for intelligent book acquisition. Students on this team will use machine learning techniques to deliver a proof of concept system which reliably predicts the likelihood of winning a book award, for each book published in a given year.
Subaru aims to apply electrification technologies to all of its vehicles sold worldwide by the 1st half of 2030. Students on this project will focus on the customer usage aspects of the vehicle to design and build a system to capture and store the data necessary to measure the comfort zone of drivers of electric vehicles through sensors, driving control, and data collection focusing on acceleration and deceleration.
Yazaki is a global leader in the design and manufacture of electrical and electronic systems for automotive applications. Students on the Yazaki Wireless Door Module Team will investigate and develop a method for powering and controlling automotive door functions that does not require electrical wiring to be routed between the door and the car body side.
Whirlpool is looking at advanced controls technologies including machine learning, neural networks, and model predictive controllers that will more efficiently cool complex refrigerator systems. Students on this team will evaluate current capabilities on the Python framework that will be fast prototyped and applied in a simulation environment with a conceptual plant model.
Clarios creates the most advanced battery technologies for virtually every type of vehicle. Students on the Clarios team will develop a tool to collect and communicate the battery state of health to a mobile device to detect potential battery failure and avoid stranding a customer with a dead battery.
Keurig Dr Pepper (KDP) markets the number one single serve coffee brewing system in the U.S. and would like to help bring cold brew coffee to home coffee brewers around the world. Students on the Keurig team will design and build a prototype cold brew coffee machine.
This faculty research team is designing a nanospacecraft and operating a space mission that will explore the feasibility of a novel propulsion technology – miniature electrodynamic tethers – as propellant-less propulsion to new classes of very small satellites known as picosats and femtosats. Students will create a spacecraft with an operational ED tether for the first experimental testing of propellantless operation in space.
Yazaki is a global leader in the design and manufacture of electrical and electronic systems for automotive applications. The students will design an electronic error detection system, integrated into the wire harness manufacturing fixture to identify assembly issues in real-time.
In order for critical driver alert systems to be universally effective, they must be designed with the broad population in mind, including people with accessibility concerns. The students on the Arriver team will research and design a driver alert system that specifically targets drivers with accessibility issues such as deafness and color blindness.
This research will make large-scale manufacturing systems safer, more secure, and more productive, enabling them to produce high-quality products for consumers at lower cost.
Functionality is continually being added to aircraft interiors, creating the need for efficient wireless communications to keep wire mass down. Students on this Collins Aerospace Wifi Communication Bridge team will design and develop a bridge that seamlessly achieves data transfers between a low power/low bandwidth communication protocol and a high power/high bandwidth communication profile