Want to speak with someone?

Call (734) 763-0818, stop by Chrysler 117, or

email engin-mdp@umich.edu with questions.

This start-up faculty research team will develop software-based tools to facilitate diagnosis and interpretation of cancer image data for low resource global settings.
The Statistics Online Computational Resource (SOCR) is an online platform including web-services and advanced methods in probability, statistics, and machine learning in the health sector. This team will develop an enhanced analysis and visualization toolbox with an emphasis on “Big Data” - very large datasets that are difficult to analyze and interpret in meaningful ways with basic probability and statistical methods.
The Mapleseed project is developing a passive (i.e., free-falling) wireless in-situ sensor platform for use in detailed sensing of various properties of Earth’s atmosphere. Students are developing miniature wireless circuit boards (using TI cc1310 radio) along with 3D printed airframes.
Researchers at the University of Michigan Transportation Research Institute (UMTRI) have been improving accident impact simulations by broadening the types of body sizes and shapes considered. Students will develop parametric human body models that are capable of testing wide ranges of body sizes, types, and shapes to help create better adaptive and personalized designs for human safety and mobility.
To assess vehicle safety and ease to operation, we will improve upon the design of a virtual driving simulator through open-source software, simple hardware, and virtual roadway and scenario simulation.
This faculty research team designs ground radio instruments and data analysis pipelines to detect radio bursts from extreme space weather in collaboration with NASA's SunRISE mission, which will send up six SmallSats to Earth orbit to image the lowest frequency radio bursts for the first time.
This faculty research team uses core principles of animal locomotion to create advanced robot technologies by distilling their mathematical principles and using machine learning automation.
Our research develops human-centric strategies for automating video data extraction to record vehicle occupant behavior to support enhanced safety, autonomous vehicle development, and other applications.
The impact to critical electrical connectivity of automotive wire harnesses after thermal exposure is currently evaluated with costly and time-consuming physical testing. Students will research, develop, and design a virtual simulation for the wire and terminal connection to determine its pull strength performance and resulting circuit resistance delta readings prior and after undergoing high temperature degradation cycles.
One of the challenges of validating radar sensors is testing them over a full range of environmental exposures. Students on the Aptiv team will design, build and test a temperature control environment to more accurately validate radars under a wide range of environmental conditions for advanced driver assistance systems (ADAS).
Keurig Dr Pepper (KDP) markets the number one single serve coffee brewing system in the U.S. and would like to help bring cold brew coffee to home coffee brewers around the world. Students on the Keurig team will design and build a prototype cold brew coffee machine.
The moon offers an abundance of minerals and resources needed on earth and for space travel. Come help us assess what can be extracted and techniques to accomplish it.
This faculty research team is designing a nanospacecraft and operating a space mission that will explore the feasibility of a novel propulsion technology – miniature electrodynamic tethers – as propellant-less propulsion to new classes of very small satellites known as picosats and femtosats. Students will create a spacecraft with an operational ED tether for the first experimental testing of propellantless operation in space.
This research will make large-scale manufacturing systems safer, more secure, and more productive, enabling them to produce high-quality products for consumers at lower cost.
Procter & Gamble (P&G) makes products that are trusted in millions of homes, and many of these products utilize plastic film packaging. Students on the P&G team will identify contaminants in post consumer recycled (PCR) polyethylene and determine the level of PCR that can be successfully reincorporated into film packaging. All student team members will become P&G 2022 Summer Interns based in Cincinnati, OH.
This UARTS Faculty Engineering/Arts Student Team (FEAST) will conduct a collaborative and interdisciplinary study of shadows. The project aims to expand and hybridize conceptions of shadows from a range of fields, as a way of mining their artistic potential in immersive art encounters.
The SparkVotes Parties project is a series of games designed to educate and energize college-age voters. Our collaborative team will be developing imaginative ways to gamify the skills and knowledge needed for campus civic participation in the 2022 election.
Develop a new genre of inclusive augmented reality games and room-sized interactive systems that remove physical and social barriers to play. The project addresses the unmet need of players with different mobility abilities to play and exercise together in spaces such as school gymnasiums, community centers, and family entertainment centers.
ORBIT stands for the Online Resource for Building Intercultural Teams—and it’s one of many projects underway in the ORBIT Lab! We’re also developing a tool for middle schoolers to team up on social justice issues, working on a book called Creative Resilience, and collaborating with faculty in pharmacy and cardiology on an interactive dashboard to help providers better care for heart failure patients.