Want to speak with someone?

Call (734) 763-0818, stop by Chrysler 117, or

email engin-mdp@umich.edu with questions.

This start-up faculty research team will develop software-based tools to facilitate diagnosis and interpretation of cancer image data for low resource global settings.
Union Pacific runs trains all across the United States and with that comes many challenges. As we continue to build our systems, we need to ensure that the data being sent around our network is clean, in sync with other systems, and is easy to query. Students on the Union Pacific team will design and develop the components for building a comprehensive business data store structure and analytics model that will allow easy access to petabytes worth of data from a multitude of devices and systems.
The Statistics Online Computational Resource (SOCR) is an online platform including web-services and advanced methods in probability, statistics, and machine learning in the health sector. This team will develop an enhanced analysis and visualization toolbox with an emphasis on “Big Data” - very large datasets that are difficult to analyze and interpret in meaningful ways with basic probability and statistical methods.
The Mapleseed project is developing a passive (i.e., free-falling) wireless in-situ sensor platform for use in detailed sensing of various properties of Earth’s atmosphere. Students are developing miniature wireless circuit boards (using TI cc1310 radio) along with 3D printed airframes.
Researchers at the University of Michigan Transportation Research Institute (UMTRI) have been improving accident impact simulations by broadening the types of body sizes and shapes considered. Students will develop parametric human body models that are capable of testing wide ranges of body sizes, types, and shapes to help create better adaptive and personalized designs for human safety and mobility.
To assess vehicle safety and ease to operation, we will improve upon the design of a virtual driving simulator through open-source software, simple hardware, and virtual roadway and scenario simulation.
This faculty research team designs ground radio instruments and data analysis pipelines to detect radio bursts from extreme space weather in collaboration with NASA's SunRISE mission, which will send up six SmallSats to Earth orbit to image the lowest frequency radio bursts for the first time.
This faculty research team uses core principles of animal locomotion to create advanced robot technologies by distilling their mathematical principles and using machine learning automation.
Our research develops human-centric strategies for automating video data extraction to record vehicle occupant behavior to support enhanced safety, autonomous vehicle development, and other applications.
The current after-market automotive rear seat entertainment tablet headrest mounting solutions aren’t very aesthetically pleasing and they lack integrated inductive charging. The students on the Alps Alpine team will design and prototype an aesthetically pleasing solution that has wireless inductive charging integrated into it so the tablet will charge while connected to the headrest mount.
The JPMorgan Chase project team will design and deliver an analytics tool that will monitor and evaluate the current task work assignments of 2,200 global JPMC team members. The tool will recommend reassignment of project work between staff to better balance workloads and improve on-time delivery. All student team members will become JPMC 2022 Summer Interns based in Chicago, Il.
Generative design utilizes topology optimization suggesting novel geometric forms, which are then evaluated for effectiveness against the design criteria (in this case heat transferability, cost, operational life, etc.) and then developed into feasible design solutions. Students on the GM team will develop a generative design process to determine the optimal geometry for a cold-plate cooling design for an electric vehicle.
Cat Digital, at Caterpillar Inc., uses Internet of Things (IoT) connectivity and advanced analytics to provide prognostic alerts to customers notifying them of potential issues with their equipment to prompt proactive maintenance. Students on this team will analyze and model transactional data to better understand and accurately predict how customers respond to maintenance alerts.
DENSO is one of the largest global mobility/automotive suppliers of advanced technology, systems, and components. Students on this team will become intimately familiar with DENSO’s core processes in commercial management and product launch readiness, while integrating an API with Toyota Motor Corp to create efficiencies. All team members will become Denso 2022 Summer Interns based in Michigan/Tennessee.
The objective of this project is to develop software algorithms for state-of-the-art audio surveillance of aircraft cabin areas to enhance cabin safety and improve the passenger experience. Students on the Collins Audio Analytics team will develop software algorithms to support sound and voice identification, detection, and key word recognition in aircraft interiors.
This faculty research team is designing a nanospacecraft and operating a space mission that will explore the feasibility of a novel propulsion technology – miniature electrodynamic tethers – as propellant-less propulsion to new classes of very small satellites known as picosats and femtosats. Students will create a spacecraft with an operational ED tether for the first experimental testing of propellantless operation in space.
Yazaki is a global leader in the design and manufacture of electrical and electronic systems for automotive applications. The students will design an electronic error detection system, integrated into the wire harness manufacturing fixture to identify assembly issues in real-time.
In order for critical driver alert systems to be universally effective, they must be designed with the broad population in mind, including people with accessibility concerns. The students on the Arriver team will research and design a driver alert system that specifically targets drivers with accessibility issues such as deafness and color blindness.
This research will make large-scale manufacturing systems safer, more secure, and more productive, enabling them to produce high-quality products for consumers at lower cost.
The student team will explore current participatory design theory and practices toward ideation/ fabrication/production, and test developed pieces that will move forward our understanding and application of participatory design.